
In this paper we present an introductory analysis of throughput scalability for update-
intensive workloads (such as measured by the TPC-C or TPC-W benchmarks) and how
that scaling is limited by serialization effects in the software-hardware combination that
comprises any platform.

Commercial Clusters and
Scalability

About the Author
Neil J. Gunther, M.Sc., Ph.D., is an internationally known computer
performance and IT researcher who founded Performance
Dynamics in 1994. Dr. Gunther was awarded Best Technical Paper
at CMG’96 and received the prestigious A.A. Michelson Award at
CMG’08. In 2009 he was elected Senior Member of both ACM and
IEEE. His latest thinking can be read on his blog at perfdynamics.
blogspot.com

http://www.youtube.com/user/TeamQuestOptimizesIT
http://www.teamquest.com/blog
http://twitter.com/TeamQuest_Corp
http://www.linkedin.com/groups?home=&gid=984207&trk=anet_ug_hm

Introduction

The search for parallelism in commercial processing continues apace. Software enhancements
for parallelism regularly appear in each of the commercial relational database management
systems (RDBMS) such as: Oracle, Sybase, DB2, MSSQL.

Hardware vendors such as Sun Microsystems offer improved efficiencies in their existing
shared memory platforms while others, such as: HP, IBM/Sequent, and SGI, offer ccNUMA
or Non-Uniform Memory Architectures. Windows 2000 offers its own style of cluster solution
[Sportak 1997].

The underlying motivation for this trend rests on the potential economics of scale offered by
efficient parallelism. In this article we present an introductory analysis of throughput scalability
for update-intensive workloads (such as measured by the TPC-C or TPC-W benchmarks) and
how that scaling is limited by serialization effects in the software-hardware combination that
comprises any platform.

Hardware Parallelism

There are three major hardware architectures that support varying degrees of parallelism
[Buyya 1999]. These are commonly denoted as follows:

Shared Memory - Comprises a single bus between a common, shared memory and multiple 1.	
processors (often with local cache memories to further improve memory latency). A variant
on this theme adds a small number of buses or memory modules. For most commercial
applications it is important that available processor be able to do work. These platforms
are referred to as “symmetric” multiprocessing or SMP. Most multiprocessors on the
market are of this type.

Shared Disk - Here, disk storage is shared between multiple SMPs to improve availability 2.	
(not necessarily performance). A common implementation involves just two SMP nodes
sharing a set of dual-ported disks to remove the single point of failure.

Shared Nothing- Typically refers to an architecture where each node possesses its own 3.	
complement of memory, disk, and CPU. This is actually a misnomer. If there was truly no
sharing going on, there would be no need for a high-speed network to interconnect each
of the processing nodes. The intent is that the interconnect network be the least utilized
subsystem. But, as we shall see, that is not written in stone! The degree of sharing between
the processing nodes is also a function of the application running on them (see the section
called Grains of Parallelism).

Another version of the shared-nothing architecture is NOWs (Networks of Workstations) or Peer-
to-Peer file sharing. The latter is the kind of point-to-point file distribution that was being done
between PCs via Web-based services such as Napster.com. In that case, the entire internet is
the interconnect network. However, one needs to keep in mind that relatively little computation
is done in file sharing services. The current commercial database architectures are not scalable
on Peer-to-Peers platforms, so we shall not discuss them any further here.

2 of 13 Commercial Clusters and Scalability White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

The actual topology of the processor interconnect network varies considerably across currently
available server platforms. For example. The optimal interconnect topology for OLTP or other
database workloads is not probably known.

In contrast to SMP architectures where the memory bus bandwidth remains fixed as processors
are added, the salient point about clusters is that shared nothing architectures add more
bandwidth as more processing nodes are added to the system. This concept is shown very
schematically in Figure 1.

In several cases, we have cluster vendors that originally established themselves in the scientific
and engineering marketplace - which includes funding from military sources. As this funding
for parallel “number crunchers” dries up, those vendors are under increasing pressure to
position their platforms as “parallel” database machines for commercial applications. Capacity
planners need to be aware of this syndrome and recognize that clusters which demonstrate
excellent performance running the Linpack or Livermore Loops scientific benchmarks will not
necessarily demonstrate comparable OLTP performance. Compared to database applications,
scientific code is simpler, the working sets are much smaller, and the amount of data sharing
is easier to minimize. We will formalize this point shortly.

Economies of Scale

The same commodity pressures we see shaping the open systems marketplace (i.e., proprietary
systems arc ultimately too expensive when compared with open systems) will share the
migration to parallel systems. In the “plug-and-play” game of open systems. the consumer
can choose platforms and applications from independent vendors at competitive prices. The
paradox is that coherent performance management tends to be a casualty of this migration
process. Indeed, the future ain’t what it used to be!

Unlike the proprietary systems, the platform and operating system come from the hardware
vendor while the RDBMS middleware and the applications software will all come from other
(software) vendors. We see this effect now in the migration to client-server architectures in the
database server marketplace. It is this commodity pressure that drives enterprises to adopt
open systems in the first place.

3 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Since client-server is an example of loosely coupled distributed applications, we can expect
the same scenario to apply to UNIX and NT cluster migration. The net result for an enterprise
is that any commercial gain due to commodity pricing can be offset by loss of control over
performance management and capacity planning.

Much of the traditional mainframe approach to capacity planning are not applicable to large-scale
systems because UNIX performance instrumentation on SMPs is immature and applications
running clusters present a completely new set of issues. But this is not the only problem.

Even if UNIX performance instrumentation were in better shape, it cannot inform the capacity
planner about performance aspects of the RDBMS. That information must be gleaned separately
from statistics reported by the RDBMS. But there is no consistency across the various database
vendors as to how these statistics are reported and what they contain, let alone integrating
this information. A product such as TeamQuest Performance Software can help here.

Open cluster platforms use more commodity parts, e.g. the same microprocessors used in
PCs and workstations. The commodity pricing of a microprocessor, however, is primarily
determined by its share of the workstation or PC marketplace. The engineering requirements
in that marketplace are often the converse of what is required for the large-scale database
marketplace. For example, the working set of an RDBMS is much larger than the typical on-chip
cache sizes provided with commodity microprocessors.

Therefore, even though the prima facie argument of a thousand (cheap) chickens versus ten
(more expensive) oxen looks appealing. it is less impressive if all those chickens need to
stop for frequent feeding. Microprocessor speeds are also tending to outpace the speed of
commercially available memory controllers. This conflicts with the requirement for the RDBMS
to access its own memory caches to service requests from database backend servers.

Arguably, for these reasons and others, the die has been cast regarding hardware technology
for cluster systems. The remaining issues lie with software, generally, and in the RDBMS. in
particular. How can we formalize these effects in the context of capacity planning for cluster
systems?

Scaleup vs. Speedup

First, it is useful to distinguish between the terms “speedup” and “scaleup.” The former term
is usually associated with a measure of parallel numerical performance, while the latter is
more appropriate for transaction system workloads.

Speedup quantifies the reduction in elapsed time obtained by executing a fixed amount of
work on a successively greater number of processors. This is central to the notion of why an
aircraft designer might buy a supercomputer; the designer wants the same calculation done
more quickly. This is not the typical reason that a capacity planner recommends the purchase
of more computer equipment for the enterprise.

It means that there is not just a point of diminishing returns, rather, there is a definite ceiling
on the throughput of the system!

4 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

More commonly, the enterprise needs to support more “users” (humans or other computers
on the network). The capacity planner does not want the additional load to adversely impact
the response times of the current user community. So, the capacity of the system must be
grown. or scaled up, in proportion to the additional load.

Hence, scaleup may he defined as the ability of a greater number of processors to accommodate
a proportionally greater workload in a fixed amount of time. Let us denote this scaleup capacity,
C(N), where N is the processors in the system.

Optimistic Scaleup

In the ideal case, where there is no possible interference between processors trying to access
a shared resource (e.g., the database buffer cache), the scaleup will be linear, i.e., throughput
will increase in direct proportion to load as more processors are added. This shared nothing
ideal is represented by the straight line in the Figure 2. More formally, we can write a simple
equation: C(N) = N. For realistic workloads, however, this will not be the case. If the amount
of serial contention for a common resource (in hardware, software, or both) is represented as
a single parameter 0 < < 1, then a more realistic model of the capacity is given by:

shown as the curve in the Figure 2

5 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Amdahl Serial Fraction

As N grows, the second term in the denominator also begins to grow but only slowly at first,
because σ is a small number. Eventually. that term begins to subvert the otherwise linear rising
function making it fall away from linearity.

The rate of divergence is completely determined by the value of σ. In keeping with the notion
of serial contention. we call this parameter the “seriality” factor. Interestingly. this equation
has the same form as Amdahl’s law

[Amdahl 1967] but with a different interpretation [Gunther 1993].

The seriality factor can be determined by measuring only a small number of processors in the
system. The simple equational model can then be used to extrapolate the scaleup for the larger
system. The general behavior of this capacity model is that C(N) is a monotonically increasing
function of N which approaches the asymptote 1/σ.

Figure 3 attempts to show this effect more intuitively. The parallel portion of the total execution
time can he reduced in proportion to the number of processors applied to the workload. The
serial portion, however, remains unchanged since only a single processor can perform that
work. As more and more processors are added to increase the degree of parallelism, the fixed
serial portion dominates the reduced execution time and is responsible for the sublinear
“bending” in the scale-up curve.

6 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

The author discovered that this model. unfortunately, is generally too optimistic for open OLTP
workloads. In other words, there are additional degradation effects not accounted for in this
model--super-serial effects.

This result does not mean that OLTP scalability cannot follow a near linear trajectory. But
typically, this will occur when the system comprises totally proprietary components, e.g. the
Tandem Himalaya has shown excellent OLTP scalability on the TPC-C benchmark. In general,
this will not be the case in open cluster systems. In proprietary architectures, the overall design
is tailored and every “nut and bolt” can be tweaked - especially those in the software. This
degree of tuning is a crucial feature for optimal performance and is not generally available in
cluster systems.

Super-serial Scaleup

It turns out that the other effects are related to the overhead of maintaining data consistency in
shared, updated data resources - such as one finds in OLTP workloads. For example, consider
the case of an SMP where multiple copies of the same data are maintained in the hardware
caches of the processors. Eventually, in an OLTP workload, one of the processors will update a
particular datum. Now, when another processor comes to read that datum it will be inconsistent
with its existing cached copy. Therefore, before that processor can continue execution it must
first fetch the updated value into its cache. This additional time spent fetching exacerbates the
transaction latency and results in even more dramatic performance degradation. See Fig. 4.

For parallel systems, any overhead for data consistency in multiple RDBMS caches will induce a
similar effect. A more accurate model that accounts for this effect was discovered by the author.
The optimistic model is corrected to include an additional term in the denominator giving:

7 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Now, there are three terms in the denominator. We refer to these as the “Three C’s” denoting:
Concurrency. Contention, and Coherency. There are several important things to note about
this modified model. The characteristic of this equation for increasing values of λ (downward
trend) is shown in Figure 5. Note first, that the third term in the denominator depends on the
existence of seriality contention. If there is no contention for a common resource there can be
no possible coherency effects. Hence, we call λ the super-seriality factor.

Second, because the third term grows quadratically in the number of processors, it induces a
MAXIMUM in the scalability curve. This is very different from the optimistic model discussed
earlier. It means that there is not just a point of diminishing returns, rather. there is a definite
ceiling on the throughput of the system! Note also that the ceiling occurs at smaller and smaller
processor configurations as λ gets bigger.

On the other hand, as λ → σ we recover the optimistic model, as expected. A more detailed
account of these models is given in [Gunther 1993].

8 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Figure 6 shows a comparison of measured OLTP benchmark data with the super-serial model
described above. The model shows good agreement with the data and we note the appearance
of a ceiling in C(N) at about 25 processors.

Figure 7 shows a similar comparison for an MPP system. Once again we see evidence of a ceiling
at about 125 processors. So, on this OLTP workload there is every indication that thousands
of processors would be ineffective.

9 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Comparative Scalability

To meet pricing constraints in the cluster market it may turn out that the available processing
nodes will not always he the fastest available; some SMPs may have fewer but more expensive
processors.

As Figure 8 reveals, the SMP may have superior throughput at a smaller number of processors but
the MPP may offer better growth characteristics - up to any ceiling, that might be present.

Summary

There are many myths about the performance gains offered by clusters. From the above
discussion, you should now be in a better position to assess OLTP scalability. The key points
to keep in mind are:

Do not accept statements like “99% scalable”. Remember the “Three C’s” concurrency, •	
contention. and coherency. Throughput scalability is not a number, it is a function of the
number of processing nodes for a specific set of workload characteristics. Technically, the
parameters s and 1 in the scaling equation presented here reflect that dependency.

The scaling parameters can be determined by measurements on a small configuration •	
parallel platform. Those data should he used to plot C(N) against N.

Cluster architectures are physically more scalable than SMP architectures because adding •	
processors to an clusters adds more aggregate interconnect bandwidth whereas the
interconnect bandwidth remains fixed in SMP. But software performance (or rather, lack
or it) may defeat the available bandwidth.

10 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Tools to support dynamic tuning and data partitioning are also very important. Remember •	
that OLTP performance on a parallel platform will he extremely sensitive to data layout.

Do not accept statements like “Scalable to thousands of processors”. From the above •	
discussion you should now be able to objectively evaluate claims about how many processors
can be plugged together electrically from the capacity ceiling that might be imposed by
the software components.

The reader who is interested pursuing applications of clusters can find a thorough account in
[Pfister 1998].

Grains of Parallelism

Massively parallel processors are the kind of clustered systems that have been used typically for
scientific computations e.g., seismology and aerodynamics. Without intending to oversimplify
the complexity of these problems and the ingenious algorithms designed to solve them, the
central idea is to detect code structures, such as iterations of a loop. Then, instead of executing
the loop in sequence, the iterations are divided up across a large number of processors to
he executed simultaneously. This is the basis of the speedup metric referred to in the main
text. At each step during parallel execution, every processor in the parallel cluster complex
is executing an identical instruction, but acting on different data. This instruction level of
parallelism is the strongest form and is, sometimes called fine-grain parallelism. Since there
is only one program being executed, however, the workload is single-threaded or corresponds
to a single-user.

Symmetric multiprocessors (SMPs), on the other hand, are more efficient at handling multiple
users or multithreaded workloads. In that case. each processor is typically executing the same
kind of code but at any point in time will he executing a different instruction. This level of
parallelism, sometimes called course grain, is the weakest form of parallelism. SMPs can he
used for fine-grain computations, but a disadvantage comes from having only a few processors
rather than a few thousand across which to divide the workload.

These two examples represent the ends of a spectrum of parallelism [Flynn 1995]. Database
workloads fall somewhere in the middle of this spectrum. They are definitely multi-user and
therefore are certainly not fine-grain, but they can have a higher degree of parallelism than
purely coarse-grain workloads. The degree of parallelism is determined by a number of factors
such as: data partitioning, e.g., hash or range partitioning; and the degree of data flow that can
he expressed in the database access language. The language, SQL (Standard Query Language)
has properties that make it suitable for achieving high degrees of parallelism in the context
of relational databases. Hence, it is one of the driving influences behind the re-emergence of
parallelism in the context of large-scale database systems.

11 of 13 Commercial Clusters and Scalability

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

References

Amdahl, G., 1967. “Validity of the Single-Processor Approach to Achieving Large-Scale Computer
Capabilities,” Proceedings of AFIPS, p.483. April.

Buyya, R. (Editor), 1999. High Performance Cluster Computing: Architectures and Systems,
Volume 1, Prentice-Hall.

Flynn, M. J., 1995. Computer Architecture: Pipelined and Parallel Processor Design, Jones and
Bartlett Pub.

Gunther, N. J., 1993. “A Simple Capacity Model for Massively Parallel Transaction Systems.”
Proceedings of CMG Conference, San Diego, California, December.

Gunther, N. J., 2000. The Practical Performance Analyst, iUniverse.com Inc.

Pfister, G. F., 1998. In Search of Clusters, Prentice-Hall (2nd. Edition).

Sportak, M. A., 1997. Windows NT Clustering Blueprints, Sams Pub.

12 of 13 Commercial Clusters and Scalability

TeamQuest Corporation

www.teamquest.com

Americas
One TeamQuest Way
Clear Lake, IA 50428
USA
+1 641.357.2700
+1 800.551.8326
info@teamquest.com

Europe, Middle East and Africa
Box 1125
405 23 Gothenburg
Sweden
+46 (0)31 80 95 00
United Kingdom
+44 (0)1865 338031
Germany
+49 (0)69 6 77 33 466
emea@teamquest.com

Asia Pacific
Units 1001-4 10/F
China Merchants Bldg
152-155 Connaught Rd Central
Hong Kong, SAR
+852 3571-9950
asiapacific@teamquest.com

Copyright ©2010 TeamQuest Corporation
All Rights Reserved

TeamQuest and the TeamQuest logo are registered trademarks in the US, EU, and elsewhere. All other trademarks
and service marks are the property of their respective owners. No use of a third-party mark is to be construed to
mean such mark’s owner endorses TeamQuest products or services.
The names, places and/or events used in this publication are purely fictitious and are not intended to correspond
to any real individual, group, company or event. Any similarity or likeness to any real individual, company or event
is purely coincidental and unintentional.
NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related material disclosed
herein are only furnished pursuant and subject to the terms and conditions of a license agreement. The only
warranties made, remedies given, and liability accepted by TeamQuest, if any, with respect to the products
described in this document are set forth in such license agreement. TeamQuest cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or software material,
including direct, indirect, special, or consequential damages.
You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.
The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions. U.S. Government Rights. All documents, product and related material provided to the
U.S. Government are provided and delivered subject to the commercial license rights and restrictions described
in the governing license agreement. All rights not expressly granted therein are
reserved.

Follow the TeamQuest Community at:

mailto:asiapacific@teamquest.com?Subject=Gunther: Commercial Clusters and Scalability
mailto:emea@teamquest.com?Subject=Gunther: Commercial Clusters and Scalability
mailto:info@teamquest.com?Subject=Gunther: Commercial Clusters and Scalability

	Button 34:
	Button 35:
	Button 36:
	Button 37:
	Button 21:
	Button 22:
	Button 23:
	Button 29:
	Button 30:
	Button 31:
	Button 32:
	Button 33:

